Analysis of Vegetable Nutritional Garden Interventions to Improve Socio-economic Status, Nutritional and Livelihood Security of Selected Beneficiaries under DST- WOS-B Project of District Moga, Punjab, India

Manisha Dubey a#*, S. K. Jindal a†, T. S. Dhillon a‡, Sonika Sharma b¥ and Ravi Deepika cϕ

a Department of Vegetable Sciences, Punjab Agricultural University, Ludhiana, India.
b Department of Food and Nutrition, Punjab Agricultural University, Ludhiana, India.
c Department of Floriculture and Landscaping, Punjab Agricultural University, Ludhiana, India.

ABSTRACT

Study was carried out in Punjab Agricultural University, Ludhiana, Punjab to analyse the impact of vegetable nutritional garden on the nutritional intake and socio-economic status of selected beneficiaries of District Moga, Punjab, India. Survey conducted to assess the impact of DST Project from 82 beneficiaries across the two blocks i.e. Village Khosapando and Niddhawala, Village Dagaru and Churchak from November-December, 2019 and again August-September, 2021, through a structured questionnaire developed by the Department of Food and Nutrition. The data pertaining to general profile, dietary habits, socio-economic status of the beneficiaries.
The dietary diversity questionnaire include 12 groups of food like Cereals, Pulses, Green leafy vegetables, Roots, Tubers, Fruits, Vegetables, Milk and Milk products, Egg, Fat, Sugar, Meat and Miscellaneous. The information on respondent's food consumption was collected using (24-hour recall). The results have shown that, there was difference in the nutritional uptake of beneficiaries during the intervention period and before the intervention of project. Under this project, area under vegetable cultivation has increased significantly in all selected villages over period 2019-2022 i.e. area under vegetable production in Village Khosa Pando, Dagru, Chuharchak and Nidhanwala increased by 91.6,100, 93.9, 94.2 percent. Moreover, per capita income of farmers having landholding of 0.5 to 1 acre and 0.1 to 0.5 acre has increased by 180 and 62 percent respectively. Furthermore, the consumption of green and leafy vegetables, roots and tubers, and other vegetables by intervention household increased drastically from 61.4, 48, 54 to 97.6, 95.0 and 88.1 respectively after establishing vegetable nutrition gardens.

Keywords: Nutritional status; food intake; income; land area; horticulture.

1. INTRODUCTION

Vegetables are increasingly considered as an essential and cheap source of vitamins and minerals provide food and nutrition security. Moreover, in developing countries vegetable cultivation is a promising economic and sustainable approach to alleviate poverty and unemployment in rural areas [1]. Vegetable production is a key component of farm diversification strategies to improve dietary choices. In current era, the importance of economic and nutritional power of vegetables has not been sufficiently realized. It is crucial to realize the role of horticulture based interventions in nutritional and livelihood security and income generation. Therefore, this is a right time to make investment in vegetable cultivation to generate revenues and create awareness about the importance of consuming vegetables among people through horticulture based interventions for small land holder farmers and providing healthy diets for all. Various studies have shown that agri-based interventions, such as establishing vegetable nutrition garden with seasonal vegetable seed kits which contain high quality vegetable seed can lead to a significant improvement in the nutrition of household members [2].

In low income countries, dietary diversity in context of vegetable consumption has actually reduced despite the average incomes increased [3]. Some families remain deprived of certain nutrients due to expensive animal products and vegetarian nature, so, vegetable nutrition gardens are cheap source of organic and nutritive vegetables [4]. Recommended daily consumption of vegetables is 300g per day per person, but majority of people are only able to meet about 1/9the of that requirement. A planned vegetable cultivation in limited area will improve nutritional requirement and food supply along with high yield per unit area. India has wide range of agro-climatic zones which offers continuous supply of fresh vegetables throughout the year in different parts of country. It was observed that people with poor economic status finds difficult to consume vegetables on daily basis as vegetable are relatively expensive per kilocalorie of energy in comparison to other staple diets such as cereals. Therefore, they give priority to consume energy rich foods to meet the daily requirement of calories. At this point, giving low priority to consuming vegetables seems understandable and justiciable for poor rural population [5].

Vegetables are good source of antioxidants that reduce the incidence of cardiovascular diseases. Evidences suggested that horticulture-based nutrition interventions like establishing vegetable nutrition gardens offer a potentially sustainable approach to mitigate multiple nutritional deficiencies [6]. Studies conducted on food consumption suggests that cereal-based diets are much prevalent among rural people due to the cheapest source of energy [7]. In addition to this, any change in the nutrient intake can lead to malnutrition with its serious consequences [8]. Macro and micro nutrient deficiencies among elderly population are public health problem in most developing countries, partly due to a monotonous, cereal-based diet that lacks diversity. A study conducted in Zimbabwe found that vegetable nutrition gardens have a positive impact on livelihood as they provide steady incomes and curb diet-related diseases along with cheap vegetables thereby mitigating the daily food cost and also protect the environment [9,10].
Access to variety contributes to dietary diversity in China was studied by Liu et al. [11]. It was observed that a higher cost of access negatively affects the individual’s ability to diversify her diet in terms of both the total counts and the balancing of varieties consumed. In rural communities where consumers have been limited in their ability to diversify food baskets by high electricity and transportation costs, infrastructure development and modernization may effectively improve nutritional balance. Increasing the availability and consumption of nutrient-rich foods through a household’s own production is considered to be a sustainable approach because the process empowers household members, particularly women, to take ultimate responsibility for the quality of the diet of the households through their own production and improved nutritional knowledge.

Dietary diversity has been universally identified as a key element of high-quality diets [12]. However, lack of dietary diversity is a major nutritional concern among deprived people from the low-income countries. Changing from a monotonous diet to one with varied food types has been shown to improve energy and nutrient intakes in the people from developing countries [13]. Mushroom cultivation and production is common, particularly in Europe, America, and Asia to reduce vulnerability to poverty and strengthens livelihoods through income generation and nutritious source of food [14]. So, mushroom production was one of the components of the project to improve overall nutritional quality of the diet and dietary diversity. Therefore, diversity in the diet is important to meet the requirements for energy and other essential nutrients, especially for those who are in the risk of nutrition deficiencies. Therefore, there is need to implement agriculture-based interventions for the nutritional and livelihood security of poor people.

In order to fill this gap, baseline data has collected from 87 beneficiaries across the 02 block containing 04 villages i.e. Khosa Pando, Chuhar Chakk, Nidhan wala, Dagru under Block Moga II and Dharm kot in Moga district of Punjab in May, Aug 2020 and July, August 2021 through a structured questionnaire developed by the Department of Food and nutrition college of Community Science, Punjab Agricultural University (PAU). Seasonal vegetable kits developed by Department of Vegetables Sciences, PAU Ludhiana were provided to selected beneficiaries to cultivate green leafy vegetables (Amaranthus, Indian spinach, Coriander, Spinach, Leaves of Pumpkin, and Cauliflower), roots and tubers (Sweet Potato, Radish, Onion, Carrot, Potato and Beet root) and other vegetables including mushrooms (Ridge gourd, Pumpkin, Cow pea, Lady’s finger, Tomato, Beans, French bean, Cucumber, Bitter gourd, Ivy gourd, Pointed gourd, Brinjal, Cauliflower, Cabbage, Spring onion, Ridge gourd, Chili, Peas and Mushroom) that are rich in vitamins and minerals, easy to grow and can be grown almost throughout the year. The objectives of this project as follows:

1. Detailed survey for base line data on present socio-economic status, land holding, cropping preference of selected small and marginal farmers/ farm women and educating them regarding the harmful effects of indiscriminate use of pesticides and fertilizers on human health.

2. To train/skilled up the selected farmers/farm women for establishment of PAU vegetable nutritional garden in front and backyards by advocating resistant/tolerant varieties along with scientific and eco-friendly methods to improve dietary diversity with button mushroom for their empowerment, nutritional, and livelihood security.

3. To enhance the regular income of selected farmer/farm women by entrepreneurship development and formation of Self Help Groups (SHGs) through off-season vegetables and multi-rack mushroom production.

This paper will undertook the impact of Punjab Agricultural University developed Vegetable Nutritional Garden on human health, nutrient intake, dietary diversity and income generation of selected beneficiaries of Moga district.

2. MATERIALS AND METHODS

2.1 Location, Time, and Respondents

For this study, 3 surveys were conducted i.e. one survey was conducted to collect the baseline data of selected beneficiaries to collect information about their dietary food habits before the implementation of project during March- April 2019, and remaining two surveys were conducted in different season in whole year i.e. summer season (April to September) and winter season (November to March) 2020-2021 from 87 farmers across the 02 block containing 04 villages.
villages i.e., Khosa Pando, Chuhar Chakk, Nidhan wala, Dagru under Block Moga II and Dharm kot in Moga district of Punjab, India.

In the selected villages, total land holding of all farmers ranges from 0.16 acre to 10 acre whereas land under vegetable production ranges from 0.18 acre to 01 acre. However, the area under vegetable production has increased under the influence of this project. Current research has also utilized, Mobile phones, Video calls and Whatsapp groups for precise and on the spot solutions for updates and feedback messages from beneficiaries due to COVID-19 Pandemic. Nutritional survey was conducted to analyze the nutritional status and dietary pattern of rural households. Methods used for nutritional survey was ‘24-Hour Recall Method’ and ‘Food Frequency Questionnaire’ developed by Department of Food and Nutrition. Dietary diversity questionnaire include 12 groups of food like Cereals, Pulses, Green leafy vegetables, Roots, Tubers, Fruits, vegetables, Milk and milk products, Egg, Fat, Sugar, Meat and Miscellaneous. From each village about 20 households were selected for the survey on the basis of land availability for Vegetable Nutritional Garden.

Under this project, 06 awareness camps and 08 training camps were organized for mass mobilizations about horticulture based interventions of current project to solve their problems including good Vegetable Practices like use of PAU vegetable Trap, Yellow Sticky Traps and Plant Extracts to minimize the use of chemical pesticides for better health and wellness. In addition to this, 09 Field visits/Demonstrations for “Learning by Doing” exercise for better rapport with beneficiaries and 02 Hands-on trainings for skill/entrepreneurship development of selected beneficiaries were organized at every village. Statistical analysis was done using Mean and standard error was calculated for various parameters. T-test was used to assess the significant difference between various parameters.

3. RESULTS AND DISCUSSION

The average daily food intake before and after implementation of horticulture interventions is given in Table 1. The percent adequacy of various foods in comparison with suggested values of selected beneficiaries [15] is shown in Fig. 1. These horticulture interventions simultaneously address vegetable availability, access, demand, and utilization and help to achieve the target of consuming the recommended intake levels of 400 g per day. This sustainable and economical approach is effective at increasing vegetable consumption among poor rural farm holds vulnerable to micronutrient deficiencies [16-19].

The most commonly used cereals among all the respondents were wheat and wheat products (cracked wheat, refined wheat, semolina etc.) and rice. The average daily intake of the cereals among selected beneficiaries was around 292 g with the percent adequacy 83% before interventions. No significant difference found in the cereal intake before and after the interventions. The mean intake of cereals in 3 income groups was 252.2, 249.3 and 264.0 g day-1 with percent adequacy of 76.4, 75.5 and 80.0 in low income group, middle income group and high income group respectively [20]. However, intake of pulses and legumes increased marginally. Similar findings on diet and nutritional status of women have been reported by Rao et al. [21]. Furthermore, the consumption of green and leafy vegetables, roots and tubers, and other vegetables by intervention household increased drastically from 61.4, 48, 54 to 97.6, 95.0 and 88.1 respectively after establishing vegetable nutrition gardens

Rethi et al. [22] noticed the same results that 76.2 percent women have started consuming vegetables on the daily basis to fulfill the nutritional requirements after introducing horticulture interventions. A Study conducted by Talukder et al. [23] that with establishment of nutrition garden volume and variety of vegetables produce inclined to three to four times approximately and same results have been found in our study. Akrofi et al. [24] reported the contribution of food items from the vegetable nutrition garden to the dietary diversity score (DDS-6.8) was significantly higher in HIV-positive (14.9%) than in HIV-negative households (9.1%) that don’t have vegetable nutrition garden in their home and have DDS 6.0. Results of K. Chayal et al. [25] lines with our results where production of vegetables at household level increased 169.27 per cent led to increased of 85.66% vegetable consumption and money-saving. However, non-significant differences observed in other food types such as fruits, sugars, milk and milk products, and fats and oils.
Table 1. Food intake of selected beneficiaries

<table>
<thead>
<tr>
<th>Food type</th>
<th>Before</th>
<th>After</th>
<th>P-value</th>
<th>Suggested intake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereals</td>
<td>292±7.64</td>
<td>294±6.54</td>
<td>0.8531NS</td>
<td>350 a</td>
</tr>
<tr>
<td>Pulses and legumes</td>
<td>42.29±0.892</td>
<td>46.36±0.652</td>
<td>0.0003***</td>
<td>50 a</td>
</tr>
<tr>
<td>Green leafy vegetable</td>
<td>30.74±1.868</td>
<td>49.84±0.652</td>
<td>0.0003***</td>
<td>50 a</td>
</tr>
<tr>
<td>Roots and tubers</td>
<td>55.00±0.629</td>
<td>95.00±0.629</td>
<td>0.0001***</td>
<td>100 a</td>
</tr>
<tr>
<td>Other vegetable</td>
<td>92.24±6.759</td>
<td>142.24±11.759</td>
<td>0.0006***</td>
<td>150 a</td>
</tr>
<tr>
<td>Fruits</td>
<td>105.4±11.213</td>
<td>108.88±10.956</td>
<td>0.8244NS</td>
<td>200 a</td>
</tr>
<tr>
<td>Milk and milk products</td>
<td>431.83±19.462</td>
<td>516.73±20.58</td>
<td>0.0001***</td>
<td>300 ab</td>
</tr>
<tr>
<td>Sugar</td>
<td>32.49±1.243</td>
<td>32.43±1.240</td>
<td>0.1815NS</td>
<td>20 ab</td>
</tr>
<tr>
<td>Fats and Oils</td>
<td>39.82±1.719</td>
<td>41.15±1.424</td>
<td>0.4001NS</td>
<td>25 ab</td>
</tr>
<tr>
<td>Meat and poultry</td>
<td>173.25±6.884</td>
<td>170±9.02</td>
<td>0.1081NS</td>
<td>----</td>
</tr>
</tbody>
</table>

a Pasricha and Thimmayamma (2010)
b ICMR (2010)
NS Non significant; *Significant at 10%; *** Significant at 1%

Fig. 1. Percent Adequacy of Food Intake of Selected Beneficiaries Before and After Interventions

Table 2. Economic Status of Small Land Loders

<table>
<thead>
<tr>
<th>Income Per Year (Rs)</th>
<th>Vegetables cultivated</th>
<th>Group I Landholding (0.5 Acre to 1 Acre)</th>
<th>Group II Landholding (0.1 Acre to 0.5 Acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Per capita income before</td>
<td>Per capita income after</td>
</tr>
<tr>
<td></td>
<td></td>
<td>intervention of the project</td>
<td>intervention of the project</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Okra, Bottle gourd, Toria,</td>
<td>-do-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Palak Radish Pea, Metha,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Onion, Potato, Garlic, Chili</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rs 1,25,000/-</td>
<td>Rs 3,50,100/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-do-</td>
<td>Rs 89,450/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yield (Qtl)</td>
<td>259.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent increase in income</td>
<td>33.32</td>
</tr>
</tbody>
</table>

The concept of “Horticulture for sustainable development” by United Nations, prioritize ending poverty as one of the most important Sustainable Development Goal (SDGs) through creating employment opportunities in horticulture sector. The production and sale of fruit and vegetables, especially on a small scale, is an effective tool for rural poverty alleviation and to meet the
recommended nutritional requirements among farmers having small landholding [26].

Table 3. PAU button mushroom for income generation and livelihood security of selected farm women

<table>
<thead>
<tr>
<th>Mushroom bags (No.)</th>
<th>Yield (Kg)</th>
<th>Income (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>81.0</td>
<td>9,315</td>
</tr>
<tr>
<td>90</td>
<td>157.5</td>
<td>18,055</td>
</tr>
<tr>
<td>350</td>
<td>735.0</td>
<td>84,525</td>
</tr>
<tr>
<td>56</td>
<td>100.8</td>
<td>12,342</td>
</tr>
<tr>
<td>45</td>
<td>76.5</td>
<td>8,797</td>
</tr>
<tr>
<td>35</td>
<td>56.0</td>
<td>6,440</td>
</tr>
<tr>
<td>48</td>
<td>86.4</td>
<td>9,936</td>
</tr>
<tr>
<td>75</td>
<td>157.5</td>
<td>17,250</td>
</tr>
<tr>
<td>62</td>
<td>117.80</td>
<td>13,547</td>
</tr>
<tr>
<td>75</td>
<td>129.0</td>
<td>14,835</td>
</tr>
<tr>
<td>65</td>
<td>117.0</td>
<td>13,455</td>
</tr>
</tbody>
</table>

Growing and selling market oriented vegetables at commercial scale not only enable small-scale farmers to reduce poverty, but also help the farmers to becoming agricultural entrepreneurs throughout the whole food value chain [27,28]. However, extension services by Krishi Vigyan Kendras (KVKs) are mandatory to make the farmers aware about the production, storage, and transportation and marketing.

Weinberger and Lumpkin [29] noticed that farmers involved in the production of vegetables often earn higher incomes than those engaged in the production of cereal crops alone. Under the influence of this project, per capita income of farmers having landholding of 0.5 to 1 acre and 0.1 to 0.5 acre has increased by 180 and 62 percent respectively. Dubey et al. [30] found the same impact of vegetable production on increase in per capita income of selected beneficiaries after interventions. In another study, Dubey et al. [31] noticed that agriculture and dairy occupation contributes to high total and per capita income among different groups of landholders.

Before project, farmers used to cultivate only 5 to 6 vegetable but during project they were guided to grow 21 types of seasonal vegetables which ultimately led to increase in food diversity. In rural areas, sometimes sale of extra vegetables and mushroom from home gardens is the only source to earn livelihood for farm women. Therefore, farmwomen were trained to generate income from mushroom production on commercial level along with the consumption at home Table 3. The mushroom farming enterprises have a significant impact on mushroom farmers to raise the income of the farming community, creating additional employment opportunities, providing sustainability to the existing cropping system. Mushroom farming is transforming farmers into full scale entrepreneurs with diversifying towards mushroom spawn production, mushroom processing and mushroom trade, improving farming health and education and supporting local economy [32]. Ali [33] conducted research on vegetable nutrition gardens where mushroom cultivation and bee-keeping are included into the garden contributing to the share of proteins and other nutrients available for the family.
Allagbé et al. [34] noticed that market oriented vegetable farming provides nutritional and balanced diet to rural population along with enhanced farmers household income and living standard in Benin. Under this project, area under vegetable cultivation has increased significantly in all selected villages over period 2019-2022 i.e. area under vegetable production in Village Khosa Pando, Dagru, Chuharchak and Nidhanwala increased by 91.6, 100, 93.9, 94.2 percent. Sunny and Sanjay [35] reported that the area under vegetable cultivation had almost doubled whereas the production had increased by three times over period 1985–86 through 2010–11 in India. During the period 1990–91 to 2005–06, the increase in production of vegetables in Punjab was found to be due to the effect of area but during the 2005–06 to 2010–11, the effect of productivity was higher. Sidhu et al. [36] reported that growing of vegetable crops at the household level not only help to enhance the quantity and quality of food intake but also contribute towards decrease in the area under paddy wheat rotation besides reducing family expenditure.

Kundu and Tapan [37] conducted a survey in belts of south 24 parganas district of West Bengal and observed a significant increase in the annual per capita consumption of vegetables. In the Madan Nonglakhiat village, farmers were provided with seasonal vegetable seeds, seedlings, package of practices, and popularized technology for three years by KVK Ri-Bhoi. Consequently, the yield has increased from 12 to 64 per cent in vegetables and 341 per cent in spices [38]. Dubey et al. [30] reported a 59.42, 59.43, and 57.28 percent increase in consumption of different vegetables like green leafy vegetables, roots and tubers and other vegetables respectively. Similarly, vegetable consumption in villages Khosa Pando, Chuharchak, Nidhanwala, Dagru inclined by 58.6, 71.3, 80.0, 78.2 percent respectively under this project.

4. CONCLUSION

The literature summarized in an earlier section of this, agrees that horticulture based agricultural programs is a sustainable approach and contribute in improving livelihoods and nutritional security, diet quality, social status, economic performance, self-employment and women’s empowerment of district Moga of Punjab.

There is paradigm shift in mindset of beneficiaries of Aspirational district of Moga and its not only selected beneficiaries but also their close relatives and friends w.r.t. importance of vegetable in their daily diet as well as for commerce.

- 86 families adopted PAU Vegetable Nutritional Garden for nutritional and livelihood security and the saving of their hard-earned money by growing PAU Vegetables Nutritional Garden was worth Rs. 1500/- to 1700/- per month per family.
- 13 beneficiaries have adopted improved vegetable varieties developed by PAU for
commercial cultivation for a regular income of approx. Rs.25,000/ 0.125 Acre to Rs.3,50,000/Acre/year.

• 11 families have adopted production of multi-rack button mushroom and earned approx. Rs.9400 to 84,000/season for their livelihood security and empowerment.

• 57 beneficiaries have produced button mushroom for their nutritional and livelihood securities.

• Moreover, training of eligible households in rural area in establishing vegetable nutrition garden significantly increased the per capita supply of vegetables by 16.5 g/day, most of which was consumed within the own household. It also led to an increased diversity of vegetables in the households’ diets

Such interventions will help to achieve the target of malnutrition-free India by 2022 under National Nutrition Mission or POSHAN Abhiyaan by Govt. of India.

ACKNOWLEDGEMENT

The authors are highly obliged to the WOS-B KIRAN Division of Department of Science and Technology, New Delhi for financial assistance.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Rajasree V, Pugalendhi L. Breeding vegetables for nutritional security, In: Veganism - a Fashion Trend or Food as a Medicine. 2021;1-12. DOI:http://dx.doi.org/10.5772/intechopen.95349

12. Rathnayake KM, Madushani PAE, Silva

32. Kaur R. Impact of buttom mushroom cultivation training to improve adoption status of farmers in district Sangrur The

37. Kundu P and Tapan M. A survey on vegetable production and productivity on some selected vegetable growing belts of south 24 parganas district of west bengal. International Journal of Recent Scientific Research. 2020;11,10 (a):39760-39773. DOI:http://dx.doi.org/10.24327/ijrsrc.2020.110.5560

© 2022 Dubey et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/88226